Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 24(5): 455-461, 2022 05.
Article in English | MEDLINE | ID: mdl-35218945

ABSTRACT

Tracking new and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has become increasingly important for public health responses, primarily because of variant-dependent transmission, disease severity, and treatment decisions. This evaluation compared Seegene Technologies Novaplex SARS-CoV-2 Variants I, II, and IV (I,II&IV) assays to detect known SARS-CoV-2 variants using traditional spike gene Sanger sequencing results as the gold standard reference. Both RNA extraction and extraction-free protocols were assessed. A total of 156 samples were included in this study. There was 100% (109/109) overall agreement (95% CI, 96.7%-100%) between the spike gene sequencing and the I,II&IV results using extracted RNA for the variants included in the Novaplex assay menus. The RNA extraction-free method was 91.7% (143/156) as sensitive (95% CI, 86.2%-95.5%) as the traditional RNA extraction method. Using the extraction-free method on samples with higher cycle threshold values (>30) resulted in some mutations not being detected, presumably due to lower nucleic acid concentrations in the original samples. In conclusion, the I,II&IV assays provide an accurate, rapid, and less labor-intensive method for detecting SARS-CoV-2 and identifying known variants of interest and concern. The RNA extraction-free method for samples with cycle threshold of <30 could be cost-effective for surveillance purposes. However, spike gene sequencing retains the advantage of detecting more and new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , RNA , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...